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Abstract. A novel solution to the problem of incorporating a strong axial crystal field 
interaction into the RPA model of a Heisenberg ferromagnet is presented and discussed. The 
method is based on a technique widely used in the interpretation of nuclear quadrupole 
resonance (NOR) experiments, where the Hamiltonian is first transformed into the interaction 
picture and terms which oscillate rapidly in time are subsequently dropped. It is shown that 
when this method is applied to an S = 1 Heisenberg ferromagnet with an axially symmetric 
quadrupole interaction, unique solutions can be obtained for the ensemble averages (S ; ) ,  
The results are compared with those of earlier workers and it is shown that (i) in the limit 
T+ 0 K and D+ 0 the usual spin wave result is obtained, (ii) both excitation branches 
exhibit dispersion at finite temperatures, and (iii) a unique solution can be obtained for the 
Curie temperature 7‘, in the presence of crystal fields, in contrast to previous work. 

1. Introduction 

The problem of incorporating crystal field interactions into the random phase approxi- 
mation (RPA) for a Heisenberg ferromagnet, has been addressed by many authors. In 
particular, the reader is referred to the papers of Devlin (1971), Haley and Erdos (1972), 
Egami and Brooks (1975) and Haley (1978). The central problem, outlined by all the 
authors, is that of devising a consistent decoupling scheme which will allow ensemble 
averages to be calculated in a unique manner from the differing Green’s functions ((A ; B)) 
which arise. In particular, the results obtained using Green’s function equation of motion 
for ((fil(f); f:l(m))) are not identical to those obtained using ((f:l(f); f..il(m))). This 
problem is highlighted once again in section 2 of this paper, using the simple example of 
a spin S = 1 ferromagnet subjected to both Heisenberg exchange and a single-ion axially 
symmetric quadrupole crystal field interaction. 

In this paper, a novel solution to this problen is presented which yields consistent 
ensemble averages in the presence of a strong axial crystal field. The method, which we 
shall refer to as the transformed Hamiltonian RPA (TX/RPA), is based on a technique 
widely used in nuclear quadrupole resonance (NQR) studies. In the interpretation of NQR 
experiments, the Hamiltonian for the nuclear ensemble is first transformed into the 
‘interaction picture’. Secondly, terms which oscillate rapidly in time are subsequently 
dropped to yield a time-independent Hamiltonian (see for example Slichter (1967)). In 
this paper, it is shown that if this method is applied to the Heisenberg ferromagnet the 
truncated Hamiltonian gives rise to a consistent decoupling scheme, enabling unique 
solutions for ensemble averages to be obtained. In addition, it is found that (i) both 
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excitation branches (for S = 1) exhibit dispersion at finite temperatures, and (ii) in the 
limit T-  0 K and D + 0, the usual spin wave result is obtained. 

2. Heisenberg ferromagnet with an axially symmetric quadratic crystal field: general spin 
S case 

The Hamiltonian in question can be written in the form 

1 
- 2 D ~ { 3 S ~ ( i ) ~  - S(S + 1)) 

i 

where J ,  ( K , )  is the isotropic (anisotropic) exchange between the ith and jth atoms and 
D is the axially symmetric second-order crystal field parameter. Note that for D > 0 
the easy direction of the magnetisation lies along the z axis. Thus below the Curie 
temperature T,, the ensemble averages (S:) ,  n = 1 ,2 ,  etc., are non-zero. 

For the purposes of this paper however, we choose to use irreducible tensor operators c, in place of the Cartesian operators Sx . . . , because of their superior commutation, 
construction, contraction and rotational properties. In tensorial form, for general S ,  

= - a(S)gpBBAPP (7 f~!I(i)) - i 2 a z ( S ) J ,  

x ( f h ( i ) f : ) ( j )  - f ! ( i ) f l l ( j )  - f t ( i ) f t ( j ) )  

where (i) the ?:(a) are the unit irreducible angular momentum tensor operators (defined 
for example by Bowden et a1 (1986)) and (ii): 

a(S) = ( = U 2  f o r s  = 1) 

( = l f o r S =  1) 
(3) 

Following Zubarev (1960), we invoke the double time temperature-dependent 
Green’s function 

((A(t); B(t’))) = -i6’(t - t’)([A(r), B(r’)]-)  (4) 

where A and B are operators, and the other symbols possess their usual meanings. 
Consequently, on Fourier transforming with respect to ( t  - r ‘ ) ,  the Green’s function 
equation of motion 

E(@; B)) = (1/24([A, BI - )  + (([A, XI - ; B)) ( 5 )  

A = ?!(I) B = ri?,(m) (6) 

is obtained. For the purposes of this paper we set 

in equation (S), for reasons that will become apparent. Secondly, on making use of the 
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commutation relationship 

10437 

(7)  

we find 

where 

We now invoke the usual random phase approximation (Tyablikov 1959) 

(((f") - fb(l)fi(j)); f:l(") = ( f i )  

in the third term on the right-hand side of equation (8), together with translational 
invariance. This effectively reduces the three-operator Green's functions appearing in 
equation (9) to two-operator functions. Thus equation (9) can be re-written in the RPA 
form 

E((rf.1 (1); f:l("> = a, [n](Q (m)>a/, /w> + WE3 B*PP((fi  ( 4 ;  P! I ("> 

+ a(sl(if.6) E [ ( J / j  + K ,  )((ft (11; 

+ [3(2S- 1)(2S+3)/10]"' D ( ( f ; ( l ) ;  f!!l(m))). 

(m>>) - ~ o ( ( f i  ( i ) ;  (M>>)I 
j # /  

(12) 

If the quadrupole parameter D is set equal to zero, equation (12) can be solved in 
the usual manner (see Tahir-Kheli and ter Haar 1962, Bowden etall986). This procedure 
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involves taking the spatial Fourier transform of equation (12). For nearest-neighbour 
interactions only, it is easily shown that 

E(k)Gl = al[n](f!)/(2.n) + kpB BAPP + a(s) (? i ! l ) {J(0)+ K (o )  -J(k))lGl (13) 

where (i) 

and (ii) 

The sum overjin equation (15) is over nearest neighbours only. Note that G1 has a single 
pole of the form 

E(k )  = gpBBAPP + a(S)(f:)(J(o) + K(o)  - J ( k ) )  

in agreement with the usual spin wave result. 
Given equations (13) and (16), self-consistent values of (?[) can be obtained in an 

iterative manner. In practice, this is achieved by making use of the inverse Fourier 
transform 

together with the spectral theorem (Zubarev 1960). Proceeding in this fashion, it is easily 
shown that 

= al[n](?;)cp 

where 

Finally, using the contraction properties of the irreducible tensor operators, the left- 
hand side of equation (18) can be re-expressed in terms of (?!) and (?;+,) (see 
Bowden er a1 1986). Thus equation (18) can be written in the form of a recursion 
relationship 

n + 1 ) ( 2 ~  + n + 1) ' I2  
( ? ; - I )  + (1 + 2cp)(?i) - ((2s - (2n - 1)(2n + 1) 

+ ((2s - n ) ( 2 ~  + n + 2)) 1/2 

(2n + 1)(2n + 3) 
(?;+I)  = 0 

which is analogous to Callen and Callen's (1966) generating function for the ensemble 
averages (S;). 
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3. The S = 1 ferromagnet 

Since the highest rank tensor that can be supported by a spin-1 system is n 6 2,  equation 
(20) can be used to generate two simultaneous equations, for the two unknowns (TA) 
and (Ti). This leads directly to the solutions 

(TA) = ( 1  + 2 q ) / V 2 ( 1  + 3cp + 3 9 2 )  

(fi) = 1 / V 6 [ 1  + 3cp + 3 q 2 ] .  

(21) 

(22) 

and 

Equation (21) was first given by Tahir-Kheli and ter Haar (1962). 
In the presence of a crystal field term D ,  however, it is necessary to obtain a second 

equation of motion for the Green's function (( f ; ( l ) ;  f Y ,  (m))) appearing last in equation 
(12).  Proceeding in the usual manner we find, for S = 1 

~ ( ( f ? ( l ) ;  f~,(m)>> = {a2[nJ<fz-'(m>> +a3[nI(fa+'(m)>>S1m/(2n) 

+ gClBBAPP((m; f"_(m>>) + V 2  24) {(([ f?(OfA(I l  

- V 3 f ; ( l ) f : ( j )  + V 2 f ; ( l ) f ! 1 ( j ) ] ;  fY1(m)))> 
I " /  

+ V 2  2 K o { ( f : ( l ) f A ( j ) ;  f'!.,(m)))+ ( g 3 / V 2 ) D ( ( f i ( l ) ;  fY,(m))) (23) 
I + /  

where 

(n  - 1 )  (n  + 3)(3 - n)n(n + 1) 
a2[n' = - 2 i (2n - 1)(2n + 1) 1 

and 

(n  + 2 )  (n  + 4)(2 - n)n(n + 1) 
a 3 [ n 1  = - - 2 i (2n + 1)(2n + 3 )  

(24) 

Once again therefore, it is necessary to decouple the three-operator Green's functions 
appearing in equation (23).  

( ( f : ( l ) f A ( j )  - V 3 f i ( l ) f ! ( j )  + V 2 f $ ( l ) f ! l ( j ) ] ;  f~,(m))) 

In the past, a decoupling scheme in the spirit of the RPA has been used: 

= ( Q ) ( ( f ? ( l ) ;  f Y 1 ( m ) ) ) - V 3 ( f i ) ( ( f ! ( j ) ;  f"-(m))).  (26) 
Note that (f$) has been set equal to zero, because of axial symmetry. Consequently, on 
substituting equation (26) into (23) ,  we obtain 

~ ( ( f ? ( l ) ;  f ' y l  (m))> = Ca,[n]<f i - ' (m))  + a3 [.]<fa+' (m)>>alm/(2n) 

+gpBBAPP((f:(l); f X m ) ) ) +  V 2 Z I [ J / j  + & j I ( m ( f ? ( l L  "))) 

- V 3 J / j ( Q ) ( ( f ; ( j ) ;  fYl(m)))} + ( V 3 / V 2 ) D ( ( f !  ( 1 ) ;  (m))). (27) 

j # /  

In practice, equations (12) and equation (27) form a pair of coupled equations, which 
can be solved for the two Green's functions ( ( ? ; ( I ) ;  fYl(m))) and ((T:(l);  fY,(m))). 
However, it should be noted that the terms (diagrams), which have been thrown away 
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in the RPA of equation (11) are most unlikely to be equal to those thrown away in equation 

To obtain expressions for the ensemble averages (?I), it is first necessary to transform 
(26) * 

both equations (12) and (27). We find 

E(k)G1 = a l [ n ] ( f ; ) / ( 2 n )  f [gpBBAPP +V2(fh)(J(o) +K(O) - I ( k ) ) ]  

x G1 + ( d 3 / d 2 ) D G 2  (28) 
and 

E(k)  G2 = {a?. [n]<?:- ' ) + a 3  [a]( ' + [gpB B A P P  

+ V2( ' i ; ) (J(O) + K(O))]G2 + (V3/V2){D - 2(f$)I(k)}Gl (29)  

where (i) G1  and J(k)  have already been defined inequations (14) and (15) respectively, 
and (ii) 

Thus the Green's functions G I  and G 2  are now characterized by the two poles 

E1,2(k) = gpBBAPP + V2(?;)(J(O) + K(O) - i J ( k ) )  

k 4[ (V2( f ; ) J (k ) )2  - 12D(Q)J(k) +6D2]"*. (31) 

In practice, equations (28)  and (29) must be solved simultaneously to yield explicit 
solutions for G I  and G2. Once these have been determined, expressions for 
( (T i ( / ) ,  f?,(m))) and ( ( f i ( f ) ;  f'Ll(m))) can be obtained via the inverse spatial Fourier 
transforms 

((?:(/); fl,(m))) = N - '  G2exp[+ik*(R,  - R m ) ] .  (33) 
k 

Further, on making use of the spectral theorem (Zubarev 1960), this time applied to 
equations (32) and (33), we find 

( f ? , f t )  = a , [ n ] ( f ~ ) p , ,  +{u~[a] (? : - ' )+u3[n] ( f~+ ' ) }cp2  (34) 

( f ~ ,  f?) = a [n](fg)cp + {a2 [a](?;- l )  + a3 [n]( f ;+ '  )}q4 (35) 

and 

where (i) al[n] ,  a2[n] and a3[n] are defined in equations ( l o ) ,  (24) and (25) respectively, 
and (ii) p, , - cp4 are given by 
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respectively, where (i) El and E2 are given by equation (31), and (ii) 

Eo = gpBBmp + V2(fb>(J(o) + K(0)) .  (40) 

Finally, the contraction properties of irreducible tensor operators can be used to generate 
the set of ensemble averages for S = 1. From equation (34) we find 

and 

whereas from equation ( 3 9 ,  

and 

Since q l  # q 4  and q 2  # q3, the ensemble averages calculated from the two Green's 
functions ( ( f t ( l ) ;  f"(m))) and ( ( F ! ( l ) ;  fY l (m)) )  are therefore not identical. In fact this 
problem also exists when D = 0. Equations (43) and (44) cannot be used to reproduce 
the Tahir-Kheli and ter Haar results presented earlier (see equations (21) and (22)). 

Many attempts have been made to overcome this problem. Interested readers are 
referred to the appendix of Devlin (1971), section (B) of Egami and Brooks (1975) and 
Haley (1978). In particular, Haley has proposed an 'interlevel Green's function', which 
is essentially a linear addition of the Green's functions involved, with coefficients chosen 
to ensure global self-consistency. This solution, however, is somewhat artificial in that 
it does not address the central issue: how can we ensure that ensemble averages calculated 
using Green's functions ((A; B)) are independent of the choice of the two operators A 
and B? A fresh attempt at solving this problem is presented in the following sections. 

4. The interaction representation 

In nuclear quadrupole resonance (NQR) problems, it is often advantageous to make use 
of the 'interaction regime' to simplify the description of the nuclear spins, evolving under 
the influence of RF fields. Consider, for example, the simple case of an I = 1 nucleus 
subject to an axially symmetric quadrupole interaction X Q ,  and a time-dependent RF 
field directed along the x axis. The Hamiltonian for this system can be written in the 
form 
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where (i) the f;(a) now refer to nuclear operators, (ii) w1 is the strength of the RF field 
directed along the x axis, (iii) 

In many NQR experiments, the quadrupole frequency we 9 wl. which suggests 
therefore that it would be advantageous to transform the problem into the ‘interaction 
picture’, using the time-dependent unitary transformation 

is the resonant quadrupole frequency. 

O(t) = e x p [ - - i ( ~ ~ / h ) t ] .  (46) 
Explicitly 

~ ~ ~ ~ / h  = O ( t ) + ( ~ / h ) O ( t )  - iO(t)+aO(t)/at 

= - o cos(w P t )  O(t)+ f: (a)  O(t) 

= -wl{fi(a)[l  + COS(2LL)Qt)l + if:(s) sin(2wQt)>/2. (47) 

In the interaction regime therefore, the strong quadrupole interaction has been ‘trans- 
formed away’, allowing the effect of weaker terms in the Hamiltonian to be examined 
in more detail. 

Following Slichter (1967), terms oscillating rapidly at 2wQ, in the interaction rep- 
resentation, are dropped. Thus equation (47) simplifies to 

which is time independent. From the NQR point of view, this represents a considerable 
mathematical simplification. In this approximation, the time dependence of the nuclear 
density matrix, in the interaction regime, can be expressed in the closed form 

Pint ( t )  = ex~[-i(Xe:”,/h)tl~int(O) ex~[i(xi’nt/h>tI (49) 
which usually forms the starting point for a theoretical discussion of the NQR problem. 
Interested readers are referred either to Slichter (1967), or Reddy (1988) who has 
recently discussed NQR for I = 1 spin systems in terms of irreducible tensor operators. 
In the next section however, we return to the problem of the Heisenberg ferromagnet. 

5 .  TXIRPA: the quadrupole interaction representation 

First, we shall assume that the quadrupole crystal field D f i  is strong. This suggests 
therefore it might be advantageous to ‘transform the crystal field terms’ away, using the 
unitary transformation 

N 

O(t) = n exp[i(Dfi(j)/h)t] = exp (i (D?i(j)/h)t) (50) 
j =  1 i 

For the Hamiltonian of equation (2) we find (for S = 1) 

1 + - Jii{ ( f (i) lf1 ( j )  + f L (i) l f i  ( j ) )  [ 1 + cos(v6Dt/h)] 
2 ti,,} 
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In arriving at equation (51) we have made use of 

= f2+l(i) i z j  (53)  

which hold for S = 1 (note y(1) = 1). Thus if we drop the terms oscillating at the high 
angular frequency of d 6 D / h  in equation (51), we find 

Note (i) the appearance of the rank 2 tensors in the exchange interaction terms of 
equation (54), and (ii) the truncation is really only valid when the crystal field parameter 
D is strong. The latter point is taken up again in section 6. 

Now that the important exchange terms have been identified, it is instructive to 
transform back to the laboratory frame. Rather surprisingly, it is found that equation 
(54) is 'invariant' with respect to the inverse quadrupolar transformation of equation 
(48). Thus in the laboratory frame the truncated Hamiltonian is given by 

%" = X", + ( 5 5 )  

where we have now recovered the full crystal field Hamiltonian XD. 

function equations of motion, for the S = 1 ferromagnet. Explicitly 
We are now in a position to implement the RPA. This yields two coupled Green's 

mi (1);  f%(") = a ,  [ n ] ( f l ; ( " J ( 2 4  + gPB B*PP(@; (0; fLl(") 

+ U 2  Z [ ( J / ,  + ~ / , ) ( ( f !  (1) ?A(;); f~ (m))) - ~ J / ~ ( @ , X / )  ?+! ( j ) ;  PI (m)))~ 

- - J1,[d6((~?1(0f:(j); f l l (m>))  +2((?+%Of!1(j); f~ t (m>) ) l  

1'1 

1 

2,#1 

+ (d3/d2)D((f : ( / ) ;  ?Yl(m))) (56) 
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where 

Again two equations (63) and (64), can be used independently to generate the set of 
correlation functions for S = 1. However due to the symmetry of equations (63) and 
(64), the unique solutions 

and 

are obtained, irrespective of the size of D. The underlying reason for this behaviour can 
be traced to the symmetry of the coupling coefficients in the Green's function equations 
(60) and (61). 

In the next section, we show that equations (62), (64) and (65) would appear to hold 
for lower values of D, than might be anticipated at first sight. 

6. Energy gap considerations 

In this, and the following section, we try to set limits on the regions where the TX/RPA 
model might be expected to hold. 

In the first place, we set the crystal field parameter D = 0. The two excitation 
branches of equation (62) are given by 

which can be compared to the well known Tahir-Kheli and ter Haar result of equation 
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(15). In the limit T = 0 K, (?A) = d 3 ( ? i ) .  Thus the two excitation branches reduce to 
a dispersive branch 

E l ( k )  D=O = g p B B A P P  + V2(TA)(J(o) + K(o)  - J ( k ) )  (71) 
T=OK 

and a non-dispersive branch 

The first of these can be identified with the usual spin wave result. At absolute zero, only 
the (I, = 1) ground state is populated, and so collective modes result from excitations 
involving transitions from ground state \I, = I) to first excited state \I, = 0). The non- 
dispersive branch E,(k), on the other hand, corresponds to a single-ion excitation from 
(I, = 0) to IZ, = - I ) ,  which at T = 0 K can only involve non-populated states. However, 
as the temperature is raised, (f;) will differ from its saturated value, and two dispersive 
branches will emerge. 

From an examination of equation (62), it is evident that the energy gap A(El(0)), 
can be written in the form 
A = ( d 3 / V 2 ) D  gpBBApp V2(?i)K(O) + (~/V~)J(O)((?/J)  - d 3 ( f i ) ) .  (73) 

As noted earlier, the last term in equation (73) vanishes at T = 0 K because 
(?A) = d 3 (  p i )  at saturation. However, at higher temperatures it is possible, in the limit 
D+ 0, that ( p i )  will fall more rapidly that (T;) thereby giving rise to an unphysical 
energy gap which increases with increasing temperature. By way of contrast the presence 
of a large crystal field parameter D ensures that (?A) will decrease with increasing 
temperature more quickly than (Ti). Indeed at the Curie temperature, (?;)is necessarily 
finite while (?A) is identically zero. Thus in this case the energy gap A will decrease with 
increasing temperature. 

To probe this question further, self-consistent calculations have been carried out for 
small values of D and K(0).  From these results it is possible to conclude that the TX/RPA 
model predictsphysically sensible results when D/J(O) 3 d ( 2 / 3 ) ,  and/or K(O)/J(O) 3 1. 
This question is taken up again in the next section, where various estimates of the Curie 
temperature are compared and discussed. 

7. The Curie temperature 

In this section we briefly compare the Curie temperature Tc obtained using the TX/RPA 
method with those obtained by other authors. 

In the first place, we set the crystal field parameter D equal to zero. In this case it is 
easily shown, using equation (34), that the Curie temperature Tc is given by 

which is the usual Tahir-Kheli and ter Haar result for S = 1. However, if we use equation 
(35), we find 

which is the molecular field result. It is clear therefore that the RPA results are not 
independent of the choice of Green's function, as noted earlier in section 3. 
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From the TX/RPA results presented in this paper we obtain the unique solution 

which can be compared to equations (74) and (75).  As noted in the previous section, 
the TX/RPA solution only gives physically reasonable results at finite temperatures when 
D = 0, provided K(O)/J(O) 3 1. A comparison of the calculated Curie temperatures 
obtained using equations (74) ( R P A ~ ) ,  (75) ( R P A ~ )  and (76) (TWRPA) for various ratios 
of K(O)/J(O) can be seen in figure 1. In the limit K(0)  -+ so, all the three estimates for Tc 
converge. 

The situation for D > 0 is more complex because (Ti) is now finite at Tc. In this case 
it can be shown, using the non-consistent RPA solution ( R P A ~ ) ,  based on equation (34),  
that the Curie temperature Tc is given by 

) (77) 
V2[J(O)  + K(0)  - $J(k)]  

2{1- cosh[P$(6D2 - 12D(Ti)J(k))”2]} kg Tc  = 

where (i) 

2 v 2  1 ( T i )  = - 
v 3  ( 1  + 601) 

and (ii) 

1 V 6 D  - v 6 ( f $ ) J ( k )  sinh[@4(6D2 - 120(T$J(k))112] 
N k 2(6D2 - 12D(f$)J(k))1’2 1 - cosh[P4(6D2 - 12D(T~)J(k) )”2]  

el = --E 

and (iii) 

1 v 6 D  sinh[Pi(6D2 - 12D(f‘i)J(k))1’2] 

N 
(51 =---E 2(6D2 - 12D(f i )J(k))”2 1 - cosh[@4(6D2 - 12D(f?j)J(k))“2] 

Alternatively if we use the other non-consistent RPA solution ( R P A ~ ) ,  based on equation 
(35),  we find 

v2(J(O)  + K(0)  - 4J(k)) 

2{1- cosh[P4(6D2 - 12D(T~)J(k) )”2]}  
k,Tc = 

where (i) 

2 v 2  1 ( P i )  = - V3 (1 + 602) 

(ii) O1 is given above in equation (79), 
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I I I I I 1 
0 1 2 3 4 5 6  

Crystal field D/JIOI 
0 1 0  2 0  

Anisotropic exchange KIOl/JiOl 

Figure 1. The Curie temperature as a function of 
the anisotropicexchange K(O), for D = 0, asgiven 
by A ,  the R P A ~  (equation (74)), B, the R P A ~  

(equation (75)) and C ,  the TX/RPA (equation 

simple cubic lattice, which of course cannot sup- 
port an axial crystal field. Nevertheless we have 
chosen to use this lattice for comparison purposes. 

Figure 2. The Curie temperature as a function of 
the crystal field parameter D ,  for K(0)  = 0, as 
given by A ,  the R P A ~  (equation (77)), B, the RPA? 
(equation (81)) and C, the TX/RPA (equation 

(76)). These results have been obtained using a (84)). 

Finally, the TX/RPA model, based on equations (63) and (64), predicts that 

where (i) 

2 v 2  1 
(”) = (1 + 6613) 

and (ii) 

As noted earlier, the TX/RPA result is only physically reasonable at finite temperatures, 
when D/J(O) 2 v(2/3) .  

Since (pi) is temperature dependent in all three models presented above, it is 
necessary to solve for both (fg) and kBTC simultaneously. In figure 2, the computed 



The RPA and crystal field effects in magnetism 10449 

Table 1. Predicted Curie temperatures, kBTc/J(0)  

(a )  D+ ( K ( 0 )  = 0 )  

Series (Ising doublet) Mean field 
Lattice Fisher (1967) TI/RPA theory RPA, RPAi 

sc  0.7517 0.9563 1.0 0.0 0.0 
FCC 0.8162 0.9687 1.0 0.0 0.0 

(b)  D-+ 0 (K(0 )  = 0 )  

Series 
(Heisenberg S = 1) Mean field 

Lattice Fisher (1967) TX/RPA theory RPAl RPA2 
~~ 

sc  0.440 
FCC 0.498 

~~ 

0.6368 0.666 0.440 0.666 
0.6468 0.666 0.49 0.666 

Note ( i )  the high-temperature-series results for D-+ 0 have been scaled by a 
factor of to compare with our results, and (ii) the RPA] results for D + 0 are 
the well known Tahir-Kheli and ter Haar values which agree remarkably well 
with the high-temperature-series results. 

values of Tc (for K(0)  = 0 )  in the R P A ~ ,  RPA2 and TX/RPA models, can be seen as a 
function of D/J(O). From an examination of this data it will be seen that as D + =, the 
predicted value of Tc, obtained using the TX/RPA saturates at 0.9563J(O) for a sc lattice. 
This is not entirely unexpected since molecular field theory predicts a limit of Tc = J ( 0 ) .  
As D+ x, the crystal field ground state is an ISz = 21) doublet. Consequently, the 
magnetic exchange terms can only act within the 1 I l )  doublet, with little influence from 
the high energy 10) singlet state. By way of contrast, it will be seen that the calculated 
Curie temperature based on the non-consistent RPA models of equations (77) and (81) 
go to zero above D/J(O) = 4 and 5 respectively. This unphysical behaviour was first 
highlighted by Egami and Brooks (1975, p 1027). In particular, they set their q2* = 0, 
in order to obtain physically sensible expressions for Tc in the limit D + =. 

Finally, in table 1 the predicted Curie temperatures for the TX/RPA model in the two 
limits D-, x and D-, 0, are compared with the Green’s function results of Tahir- 
Kheli and ter Haar (1962), Egami and Brooks (1975), Devlin (1971), and the high- 
temperature-series results (see for example the review by Fisher (1967)). It will be 
observed that the Curie temperatures of the TX/RPA for small D are disappointingly close 
to the mean field results. However, in practice it may be possible to achieve better 
agreement with the high-temperature series by modifying the RPA in the spirit of the 
Callen (1963) decoupling scheme. 

8. Conclusion 

A new method of incorporating strong crystal fields into the RPA model of an S = 1 
ferromagnet has been presented and discussed. In particular, it has been shown that the 
TX/RPA can be used to obtain a unique set of ensemble averages (ft), starting 
with the Green’s function equation of motion for either ((?Ll(l); ?:l(m))) or 
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((fi l( l);  f:l(rn))), in contrast to previous work. In addition, it has been shown (i) a 
unique solution can be obtained for the Curie temperature T,-, regardless of the strength 
of the crystal field parameter D. and (ii) the usual spin wave result is obtained in the 
limit T+ 0 K and D + 0. In a following paper, it will be shown that the TX/RPA for an 
S = 1 spin system can also be used to obtain a two-parameter analogue of the Callen and 
Shtrikman (1965) generating function, for the ensemble averages { f!). 

Finally, it should be stressed that the results obtained in this paper hold specifically 
for S = 1 spin ensembles. For spins S > 1, higher rank tensors Ti with n > 2 will be 
generated when the Heisenberg exchange Hamiltonian is transformed into the inter- 
action representation. Thus the tensor algebra will be more complex. Nevertheless, in 
another paper it will be demonstrated that (i) the TX/RPA does give rise to a unique set 
of ensemble averages (Ti) for S = I spin ensembles, and (ii) a two-parameter analogue 
of the Callen and Shtrikman (1965) generating function for the ensemble averages 
(f;) can be found. 
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